If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+5n-65=0
a = 2; b = 5; c = -65;
Δ = b2-4ac
Δ = 52-4·2·(-65)
Δ = 545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{545}}{2*2}=\frac{-5-\sqrt{545}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{545}}{2*2}=\frac{-5+\sqrt{545}}{4} $
| 2(x)+48=(x) | | 7+2(3x-5)=-3(2x+1) | | 7(x)=33-4(x) | | 39=|9-3x| | | |4y+2|=|4y-5| | | 5(w+1)-w=(w-1)+9 | | 4(x+2)=7+4x | | 4x^2-15=x^2+12 | | x2+4x=-1 | | 3x+14=2x+16 | | 6v-14=4(v-7) | | 5a+8=57 | | 8(x)=3(x)+35 | | 5-2(x-4)=3x+5(2x-1) | | x/5-2=3.5 | | 3=2x+21/5 | | 6(x+6)+3=9x-3(x-3) | | X-0.40x=95.40 | | 2+3(3x-4)=5-4(2x+1) | | 3.4^-x=11/2 | | 5x+-51=24 | | X-3/x+2=x-5/x+4 | | 92=-4(7-6x) | | 3x0-5x0=0 | | 4.9x^2+10x-12=0 | | -4x-130=x+45 | | 5/4x+1=7/3 | | X-1/3-3=x-1/2 | | 2/3(3t+6)-1/2(5t-3)=3 | | 10x+4+4x-3=12x+17 | | c-1.5+6.8=0 | | -65-7x=-10x+31 |